'''Concatenate Items
a. Write a function that takes in a list and two indices, and returns
 the concatenation of the items at the indices as long as the indices
 are non-consecutive. If consecutive indices are entered, give the user
 an appropriate message. Note: You should not assume that the caller will
 input the correct data.
b. Determine the appropriate pre- and post-conditions and use assertions to
 test each.
c. Determine the appropriate equivalence classes and write unit tests
 representing each.
'''

Step 1: Understand the problem (think requirements, constraints, assumptions.)

'''
 Req: function, takes in 3 parameters (a list, 1st index1, 2nd index),
 returns concatenation of items stored a each index.

 Constraints: Make sure indexes are not consequtive. IF there are give the
 user an appropriat message. You should not assume the that the caller
 will input the correct data.

 Assumptions: Function will only concatenate STRINGS.
'''

'''
NOTE that You must also:
 - determine pre and post-condtions,
 - and implement them in your solution via assertions.
 - determine the appropriate equivlance classes,
 - and write unit tests representing each.

Can you come up with an example showing how the function should work?

colors = ['red', 'orange', 'green', 'blue', 'purple']
concatenateItems(colors, 0, 2) --> 'redgreen'
concatenateItems(colors, 0, 1)--> 'indexes must be non consecutive'
'''

Step 2: Plan a solution
''' Start by assuming you have the "best" case
 1. function that takes in 3 parameter --> the_list, index1, index2

 2. assuming the input is valid, return list[index1] + list[index2]

 3. What types of input are not valid?
 - empty list
 - 2 item list
 - indexes that are greater than size of list
 - indexes should be integers
 - indexes need at least one item between them
 - negative indexes are okay
 - list items to concatenate should be strings
 *** THESE HELP US DETERMINIE OUR PRE-CONDITIONS ****

 4. What should be do if data is not valid?
 Give user message

Now, ask yourself - "Does this plan meet all the requirements"?

 5. Implement pre- and post-condtions via using assertions.
 What are the post conditons? --> Result should be a string.

 6. Test function using equivlance classes. What are the equivlances classes?
 Think in terms of the input parameters...
 - Number of items in list: empty list, 2 item list, list with three (or more) items
 - Types of items in list: strings, anything else, one of each?
 - Indexes: integer values (out of range, indexes in range, and one of each?), non-int indexes,coonsecutive indexes, non-consecutive indexes,
 What about negative indexes?

 *** NOTICE THAT OUR PLANS ALREADY CONSIDERS WHAT WE SHOULD TEST FOR ***
'''

'''
 Pre-conditions: (more detail)
 - the list must be a List
 - list must have at least three items
 - list items to concatenate should contain strings
 - index1 and index2 must be ints
 - index1 < len(list) and index1 >= -len(list) -len(list)<=index<len(list)
 - same as above with index2
 - abs(index1-index2)>1
'''

Step 3: Implement... and TEST!

def concatenateItems(mylist, index1, index2):
 try:
 # verify list parameter is as expected
 assert isinstance(mylist,list), 'First parameter must be a list'
 assert type(mylist) is list, 'First parameter must be a list'
 assert len(mylist)>2, 'List does not have enough items'

 # verify indexes are ints
 assert isinstance(index1, int), 'index1 must be an int'
 assert isinstance(index2, int), 'index2 must be an int'

 # verify ranges of indexes are correct
 assert -len(mylist)<=index1<len(mylist), 'index1 out of range'
 assert -len(mylist)<=index2<len(mylist), 'index2 out of range'

 # verify indexes are non-consecutive
 assert abs(index1-index2)>1, 'must specify non-consecutive indices'

 # Now we know we can access the appropriate items in the list
 # Verify items to concatenate are strings
 assert isinstance(mylist[index1],str), 'item at index1 must be a string'
 assert isinstance(mylist[index2],str), 'item at index2 must be a string'

 # concatenate the items
 result = mylist[index1] + mylist[index2]

 # if the two assertation above are True...
 # do we need to check the post-condtion?
 assert isinstance(result,str)
 return result

 except AssertionError as error:
 print(error)
 # return str(error)
 # statement below works better for automated testing with py.test
 return str(error).split("\n")[0]

'''
 How should be test this function to convince ourself it works?
 - make sure it works in the simple/expected case
 - look to "break" every assertion
 - We need at least one test from each equivlance class
 - should also consider edge cases --> when do indexes become invalid?
'''

testing if you run this file as the main file
if __name__ == "__main__":
 # as expected testing
 print("Testing expected input...")
 assert concatenateItems(['1','2','3'],0,2) == '13'
 assert concatenateItems(['1','2','3'],-1,-3) == '31'

 # everything else...
 print("Testing unexpected list...")
 # empty list
 assert concatenateItems([],1,2) == 'List does not have enough items'
 # 2 item list with valid indexes
 assert concatenateItems(['a','b'],0,1) == 'List does not have enough items'
 # 2 item list with invalid indexes
 assert concatenateItems(['a','b'],-2,-4) == 'List does not have enough items'

 print("Testing expected list, with invalid indexes...")
 # list with three (or more) items and invalid indexes
 #indexes out of range
 assert concatenateItems(['1','2','3'],0,4) == 'index2 out of range'
 assert concatenateItems(['1','2','3'],-4,0) == 'index1 out of range'
 # non int
 assert concatenateItems(['1','2','3'],'0','0') == 'index1 must be an int'
 # non-consecutive
 assert concatenateItems(['1','2','3'],0,0) == 'must specify non-consecutive indices'

 # try concatenating items of different types

 assert concatenateItems(['1',2,3],0,2) == 'item at index2 must be a string'

Step 4: Refelection and Refactoring
'''
 Reflection - We identified behavoir under expected conditions, and unexpected
 condtions (i.e., assumptions do not hold, or constaints are violated). Did all test
 cases pass? If not, we are not done!

 Refactor - How can you refactor some of the assertions? Do we really need
 all our test cases? Are we missing any test cases? How can we improve
 testing?

HW:
 How can you break the solution? Write a test case that wil have unexpected behavoir.
 Add assertation to prevent this.
'''

auomate testing using py.test
test instances are separated based on high level equivlance classes into four testcases

def test_concatenateItems_valid_data():
 # as expected testing
 print("Testing expected input...")
 assert concatenateItems(['1','2','3'],0,2) == '13'
 assert concatenateItems(['1','2','3'],-1,-3) == '221'

def test_concatenateItems_invalid_list():
 # everything else...
 print("Testing unexpected list...")
 # empty list
 assert str(concatenateItems([],1,2)) == 'List does not have enough items'
 # 2 item list with valid indexes
 assert str(concatenateItems(['a','b'],0,1)) == 'List does not have enough items'
 # 2 item list with invalid indexes
 assert str(concatenateItems(['a','b'],-2,-4)) == 'List does not have enough items'

def test_concatenateItems_invalid_indices():
 print("Testing expected list, with invalid indexes...")
 # list with three (or more) items and invalid indexes
 #indexes out of range
 assert str(concatenateItems(['1','2','3'],0,4)) == 'index2 out of range'
 assert str(concatenateItems(['1','2','3'],-4,0)) == 'index1 out of range'
 # non int
 assert str(concatenateItems(['1','2','3'],'0','0')) == 'index1 must be an int'
 # non-consecutive
 assert str(concatenateItems(['1','2','3'],0,0)) == 'must specify non-consecutive indices'

def test_concatenateItems_invalid_list_items():
 # try concatenating items of different types
[bookmark: _GoBack] assert str(concatenateItems(['1',2,3],0,2)) == 'item at index2 must be a string'

BT P ————

o, ks 3 pratns bt b,

